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Abstract. Diffusion approximations to radiation transport feature a nonlinear conduction coef-
ficient that leads to formation of a sharp front, or Marshak wave, under suitable initial and boundary
conditions. The front can vary several orders of magnitude over a very short distance. Resolving the
shape of the Marshak wave is essential, but using a global fine mesh can be prohibitively expensive.
In such circumstances it is natural to consider using adaptive mesh refinement (AMR) to place a
fine mesh only in the vicinity of the propagating front. In addition, to avoid any loss of accuracy
due to linearization, implicit time integration should be used to solve the equilibrium radiation dif-
fusion equation. Implicit time integration on AMR grids introduces a new challenge, as algorithmic
complexity must be controlled to fully realize the performance benefits of AMR. A Newton-Krylov
method together with a multigrid preconditioner addresses this latter issue on a uniform grid. A
straightforward generalization is to use a multilevel preconditioner that is tuned to the structure of
the AMR grid, such as the Fast Adaptive Composite grid (FAC) method. We describe the result-
ing Newton-Krylov-FAC method and demonstrate its performance on simple equilibrium radiation
diffusion problems.
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1. Introduction. Radiation transport plays an important role in numerous
fields of study, including astrophysics, laser fusion, combustion applications, atmo-
spheric dynamics, and medical imaging. When photon mean free paths are much
shorter than characteristic length scales, a diffusion approximation provides a rea-
sonably accurate description of radiation penetrating from a hot source to a cold
medium. This approximation features a nonlinear conduction coefficient that leads
to formation of a sharp front, in which the solution can vary several orders of mag-
nitude over a very short distance. The shape of the front can be very complex as it
interacts with different materials having different conduction properties. Resolving
these localized features with a global fine mesh can be prohibitively expensive. It
is natural to consider reducing the cost of accurately resolving these fronts by us-
ing adaptive mesh refinement (AMR), which concentrates computational effort by
increasing spatial resolution only locally.

Classical solution techniques for equilibrium radiation diffusion use a linearized
conduction coefficient to avoid the expense of solving a system of nonlinear equa-
tions at each time step. This introduces a first order error in time that precludes
effective use of higher order time integration methods, and requires small time steps
to maintain time accuracy. Analytic and computational results that demonstrate
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degradation in time accuracy associated with linearization in the presence of strong
nonlinear coefficients can be found in [24] and [15]. Such effects can be avoided by
using implicit time integration, which generally requires efficient nonlinear solution
techniques to be competitive. Newton-Krylov methods, usually preconditioned by
a multigrid method, have been instrumental in demonstrating that this approach is
practical for equilibrium radiation diffusion problems [26].

We seek to combine the benefits of improved temporal accuracy of implicit time
integration with the improved spatial accuracy that is made possible by AMR. Two
important factors must be addressed in order to fully realize the potential efficiency
gains. The first is the use of finer grids only in those regions where high resolu-
tion is required. This can be accomplished by determining regions where the spatial
error is large or where localized solution features warrant enhanced resolution, and
immediately translates into lower overall storage costs. The second is the use of algo-
rithms whose arithmetic complexity scales linearly with problem size. This presents
a significant challenge when using implicit time integration methods on AMR, grids.

Prior efforts in implicit AMR have not adequately addressed the algorithmic scal-
ability issue. Early work by Winkler, Norman, and Mihalas [31] uses r-refinement to
solve coupled radiation-hydrodynamics problems. They use a fully coupled formula-
tion, solved by a classical Newton’s method, that includes a functional to determine
new gridpoint locations for following features of the flow. Their approach is impracti-
cal for two- or three-dimensional problems, and even in one dimension difficulties with
gridpoint movement are encountered. We use h-refinement, in particular structured
AMR (SAMR), to avoid these problems. Both Trompert and Verwer [29, 30] and
Li, Petzold, and Hyman [17] use incomplete factorization to precondition their linear
solvers. Incomplete factorization can be expensive to set up, can have high storage
overhead, scales poorly with increasing resolution, and is difficult to implement in
parallel. In addition, this approach requires formation of the full Jacobian, through
either analytic or automatic means. By using a Jacobian-free Newton-Krylov method,
we eliminate the burden of supplying and storing the Jacobian.

We address the issue of algorithmic scalability by using the Fast Adaptive Com-
posite grid (FAC) method of McCormick and Thomas [19, 20] to precondition the
systems of linear equations that must be solved in every nonlinear iteration at ev-
ery time step. FAC has low setup costs, low storage overhead, and converges at
a rate independent of the number of refinement levels [20]. Similar approaches for
elasto-plasticity [5] and equilibrium radiation diffusion [28] use multilevel methods
on unstructured grids to solve the linearized equations, but still require formation of
the Jacobian. More recently, Howell and Greenough [14] solve a linearized radiation
diffusion problem on a SAMR grid as part of a semi-implicit radiation-hydrodynamics
algorithm. However, performance of the multilevel linear solver is not their primary
focus, and no details about its performance are provided. With minor modifications,
our approach could be used to implement a fully nonlinear version of their reflux step.

We report on efforts to solve equilibrium radiation diffusion problems using struc-
tured AMR and the Newton-Krylov-FAC method. While structured AMR facilitates
reuse of existing software written for logically rectangular grids, discretization at lo-
cations near changes in resolution must be treated carefully in order to avoid the
creation of artificial sources and to produce solutions with accuracy commensurate
with the finest resolution on the AMR grid.

This paper is organized as follows. The next section discusses the equilibrium
radiation diffusion model. A discussion of structured adaptive mesh refinement follows
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in §3. Special considerations for spatial discretization on SAMR grids appear in §4.
We describe our algorithmic components in §5. Results of computations appear in §6
and conclusions are summarized in §7.

2. Equilibrium Radiation Diffusion. We provide a brief description of the
equations that govern equilibrium radiation diffusion. See [21] for a more detailed
discussion.

Propagation of a radiation field and its interaction with matter can be modeled
by an integro-differential equation that accounts for transport, emission, absorption,
and scattering of photons. When the radiation field is isotropic, detailed treatment
of transport in angle is not needed. The dependence on angle can be averaged out to
obtain a description based on spectral energy density and flux. In a static medium at
local thermal equilibrium, absorption is independent of frequency, so dependence on
frequency can also be averaged out. In this case, the radiative flux can be shown to
be proportional to the gradient of the energy density, with the radiative conductivity
proportional to the inverse of the opacity of the medium. Also, when the medium
is in thermal equilibrium, emission equals absorption, and the total radiation energy
density E is proportional to 7%, where T is the temperature of the medium. These
considerations lead to a parabolic partial differential equation

E
(2.1) %:V~D(E)VE in QcRY de{1,2,3}, t>0,
with initial conditions E(t = 0) = Ey. We use a flux-limited model of radiative
conductivity

-1
o) ) = (e + I72) ™

where o < 0, § € [0,1], and Z is the atomic number of the medium. The term
IVE|/|E| is Wilson’s form for flux limiting [21, 32], which is an ad hoc adjustment
introduced to prevent nonphysical behavior in the solution, and which reproduces the
correct asymptotic behavior. The parameters o and 3 can be determined experimen-
tally or through simulation [22]. In this work & = —3 and 8 = 0.75.

Finally, boundary conditions for (2.1) must be prescribed. Penetration of heat
into a cold medium at rest from a hot source can be modeled by assuming a constant
imposed radiation field on a portion of the physical boundary 0Qx C 02. We also
assume that the remainder of the physical boundary 0y = 9 — 0Qx is perfectly
insulating. Under the same assumptions that led to (2.1), the boundary conditions
may be expressed as

2.9 in-D(E)VE+ 1E =R on Qg, t >0,
: n-D(E)VE =0 on 0Qyr, t >0,

where n is the unit outward normal to 0€2. These conditions lead to solutions of (2.1)
known as Marshak waves, which were first described in [18].

3. Structured Adaptive Mesh Refinement. Localized sharp propagation
fronts and material discontinuities make the radiation diffusion problem an excellent
candidate for AMR. h-refinement AMR techniques provide local mesh resolution by re-
fining the computational mesh locally. Structured adaptive mesh refinement (SAMR)
is h-refinement with local fine grid patches placed over coarser grid patches providing
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Fic. 3.1. A composite grid Q¢ of two levels and its component grids Q’f and Qg

increased local resolution. SAMR techniques enjoy several advantages. Regular array
access patterns improve cache performance, simple data structures for bookkeeping
minimize the overhead for computations, uniform stencil discretizations provide in-
creased accuracy, and reuse of software developed for structured grids is possible.

A SAMR grid consists of a collection of grid patches at different grid resolutions,
which together cover the computational domain. Patches with the same mesh res-
olution are grouped together and form a refinement level. Patches at a refinement
level are disjoint or touch along cell boundaries, but do not overlap. A fine grid
patch overlying a coarse grid patch is called a child patch, with the underlying coarse
patches being the parents. A child patch can have several parent patches and vice
versa. The boundaries of child and parent patches are not assumed to align except
possibly at physical domain boundaries. This leads to a natural hierarchical structure
for SAMR grids that is exploited while designing multilevel algorithms. Operations
on the composite grid are decomposed into operations on individual refinement levels
which in turn further decompose into operations on individual patches. Valid degrees
of freedom at level ¢ are defined in cells not covered by cells belonging to level £ + 1.
Cells covered by grids at finer levels are “slave” cells with their values being derived
from fine cells at the next finer level.

Notation is now introduced for a SAMR grid. 9 represents a composite SAMR
grid with J refinement levels. The subscript is dropped when there is no ambiguity.
Refinement level ¢, £ =1,2,...,.J, denoted by Q?"' or more simply as Q?, consists of
a collection {P} of grid patches at the same grid resolution hy. The refinement levels
are ordered by increasing grid resolution with hy = rheyq £ = 1,2,...,J — 1, where
r € N¢ is the refinement ratio. Each component of r is fixed at 2 in this application,
typical values being 2, 3, and 4. The subdomain(s) covered by Q} 1 fully nest within
the subdomain(s) covered by Qff. Figure 3.1 illustrates this multilevel structure;
Figures 6.4 and 6.6 in §6 provide more examples of multilevel grid configurations.

4. Discretization. We begin by first discretizing (2.1) in time. Let ¢,4; =
tn + At,, n = 0,1,..., where tg = 0 and At, is a variable time step determined
adaptively during the course of the simulation. At ¢ = ¢,,41 an equation of the form

(4.1) E" — yAL,V - D(E"THYVE™ — g, =0

is solved, where E"*! denotes an approximation to E(t,4+1), v € R, and g, is a
real-valued function of past information that is determined by the specific choice
of the discretization scheme. For backward Euler (BE), v = 1 and g¢,(E™) = E™,
and for the second-order backward differentiation formula (BDF2), v = 2/3 and
gn(E™,E"71) = 3E™ — LE™! for constant At,,.
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Spatial discretization of (4.1) on uniform meshes is done by subdividing € into
rectangular control volumes and employing standard finite volume discretization tech-

niques. Cell centers are indexed with integer pairs (4, 7), and fluxes are computed at
faces (i — %,j) and (i,j — 1) via

- Eij —Ei1,
wy  PEEICys m Foyy S DB A,
' Ei — Eij
(DIE)Ey)ij-y =~ Fij 4= D(E)i,j—%JTJJAz,

A simple scheme is employed for specifying different materials with Z in (2.2) specified
at cell centers. With this convention, it is natural to also define D(FE) at cell centers,
so face-centered values need to be defined to compute these fluxes. For this, harmonic
averages

S
=
I

1 -1

i—L1 5 2 + ) 3

(4.3) > (D(E i D(E)i;
D +

1
)i-1,5
DBij—y = 2( (E;i,j—l D(;)z’,j)l’

are used to define face-centered conductivities. Finally, the discrete spatial operator
is obtained by differencing the fluxes on opposite faces and summing the result:

(4.4) V-D(E)VE ~ (Fi+%,j - Fz‘—%,j) + (Fi7j+% - Fi,j*%) :

On a SAMR grid, the same spatial discretization is used in patch interiors. There
are numerous approaches to handling discretization near changes in resolution. A
typical situation for finite volume discretization is depicted in Figure 4.1. In gen-
eral, data at cell centers is not properly aligned across the change in resolution. The
necessary alignment can be achieved by interpolating data on the coarse side of the
coarse/fine interface. Fluxes at fine resolution can then be calculated directly from
the aligned data. Alternatively, the aligned data on the coarse side of the interface
can be centered in a ghost cell at fine resolution by interpolating in a direction normal
to the coarse/fine interface. Finally, the fluxes that reside on fine faces that coincide
with a coarse face are summed to obtain a flux on the coarse face. Piecewise lin-
ear interpolation with adjustments leads to the symmetric scheme in [11]; piecewise
quadratic interpolation is also commonly used [1]. The results presented in this paper
use piecewise quadratic interpolation, though similar performance results have been
obtained with piecewise linear interpolation.

For ghost points at coarse/fine interfaces, D(F) is interpolated piecewise con-
stant from the coarser level. Because D(E) can exhibit large jumps across material
interfaces, refinement regions must be placed carefully to ensure the accuracy of the
spatial interpolation schemes.

5. Algorithmic Components. The discretization described in §4 leads to a
large-scale system of nonlinear equations defined on a SAMR grid. In particular, note
that all levels in the grid hierarchy are advanced simultaneously with the same time
step, similar to [17] but in contrast to [29, 30]. This means that, on convergence,
our solution conserves energy at coarse/fine interfaces, eliminating the need for re-
flux operations when using local time stepping as in [14]. The system of nonlinear
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Fi1c. 4.1. Schematic of finite volume discretization at interfaces between coarse and fine regions.
The leftmost figure shows the first step, which is to align data on both sides of the change in resolution
through interpolation of data on the coarse side of the interface. The second step, shown in the
middle figure, can either center the aligned data in a ghost cell at the fine resolution, or proceed
directly to calculation of a flux on the fine face. Finally, flures computed at fine resolution must be
synchronized with the flux on the underlying coarse face; this is depicted in the rightmost figure.

equations at each time step is solved with an inexact Newton method. The linearized
problems that must be solved at each iteration of the inexact Newton method are pre-
conditioned by the Fast Adaptive Composite grid (FAC) method. These algorithmic
components are described in more detail in the following sections.

5.1. Jacobian-free Newton-Krylov Methods. Let F': R®™ — R"” be a nonlin-
ear function and consider calculating the solution z* € R™ of the system of nonlinear
equations

(5.1) F(z) =0.

Starting with an initial approximation x( to z*, classical Newton’s method for solving
(5.1) generates a sequence {zy} of approximations to z* according to

F’(zk)sk = 7F(:L‘k)

2
(5.2) Tit1 = T + Osp,

where F” is the Jacobian of F evaluated at xy and 6 € (0,1] is a damping parame-
ter. Newton’s method is attractive because of its fast local convergence properties.
However, for large-scale problems, it is impractical to determine the Newton step s
in (5.2) with a direct method. Furthermore, when xj, is far from «*, the linearization
that leads to (5.2) may be a poor approximation to F(x). It may be more efficient to
require only that s; satisfy

(5:3) [F (k) + F'(zx)sell < nllF(z)

for some n € (0,1) [8]. Appropriate selection of the forcing term 1 can lead to
superlinear and even quadratic convergence [10]. While any iterative method can be
used to find an sy that satisfies (5.3), methods such as transpose-free Krylov subspace
methods require only matrix-vector products, which can be approximated by finite
differences

F(zy +ev) — F(zk)

F’ ~
(zk)v 5
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In particular, we use GMRES because of its robustness in the presence of inexact
matrix-vector products [7]. Such a Jacobian-free Newton-Krylov (JFNK) method is
especially advantageous when F’ is difficult to compute or expensive to store, and has
proven to be effective on a wide variety of problems [16].

The damping parameter 6 is determined by a combination of traditional linesearch
backtracking [9] and problem-specific constraints. Physically, the radiation energy
density F must be non-negative. However there is nothing to prevent the calculation
of an inexact Newton step si that leads to £ < 0 in some locations. We preclude this
possibility by first scaling s to ensure that the updated solution satisfies the physical
constraints. Linesearch backtracking is then invoked on the scaled step in the usual
way.

JFNK methods facilitate use of an inexact Newton method, since an application
only needs to provide methods to evaluate F', set up a preconditioner, and apply the
preconditioner. On a SAMR grid, these operations should ideally exploit the struc-
ture of the grid. Considerations for evaluating F' are described next; corresponding
considerations for operations involving the preconditioner are described in §5.2.

On a regular grid, evaluation of the discrete form of (4.1) is straightforward, and
there are many ways to organize this calculation. One approach is

Algorithm 1: Nonlinear function evaluation
Evaluate the radiation conductivity (2.2).
Compute the harmonic averages (4.3).
Compute radiative fluxes (4.2).

Difference fluxes to obtain (4.4).
Assemble the nonlinear residual (4.1).

On a SAMR grid, computation is performed in each patch in the grid hierarchy.
Since each patch is logically rectangular, software that implements the steps in Al-
gorithm 1 can be used on each of the patches. However, data on each patch must
be supplemented to satisfy inter-patch data dependencies. The considerations are
similar to those needed for a parallel implementation of Algorithm 1, except that in
the SAMR case the required data can come from three sources: other patches at the
same resolution; data from a coarser level; or physical boundaries. As with parallel
computation, these data dependencies are satisfied by supplementing the storage in
each patch with a layer of ghost cells. Data is placed in these locations via copies
from neighboring patches at the same refinement level, interpolating data from coarser
levels as discussed in §4, and extrapolating data at physical boundaries. In addition,
fluxes on coarse faces must be properly synchronized with fluxes on fine faces (cf. the
discussion in §4), and the final result of Algorithm 1 must be synchronized in slave
cells via interpolation. These considerations are summarized in Algorithm 2.
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Algorithm 2: Nonlinear function evaluation
for{=Jtol
Fill ghost cells on Q?.
foreach P € Q)
Evaluate the radiation conductivity (2.2).
Compute the harmonic averages (4.3).
Compute radiative fluxes (4.2).
ife<J
Coarsen fluxes from Qf, | to Q.
for {=1to J
foreach P € Q)
Difference fluxes to obtain (4.4).
Assemble the nonlinear residual (4.1).
if £>1
Interpolate the nonlinear residual from Qé‘ to Q?_l.

Thus, function evaluation on a SAMR grid is a straightforward generalization of
function evaluation on a regular grid. Moreover, JENK has an added advantage for
problems on SAMR grids, since the burden of determining the structure and entries
of the Jacobian at changes in resolution is eliminated. The additional bookkeeping
needed for a SAMR grid can be provided by a SAMR grid management package [25].
However, the potential performance gains made possible by the use of AMR will be
lost without effective preconditioning.

5.2. Preconditioning. Preconditioning is essential to make the JFINK method
competitive. Yet, in the absence of an explicit Jacobian, selection of a preconditioning
matrix can be problematic. A simple linearization of (4.1) leads to the choice

(5.4) M =1-+V-D(E}Y)V

as a preconditioner, where D(E,?H) is the k' inexact Newton approximation to
the time-advanced solution E™T!. This choice was shown to be effective in [26] for
problems on uniform grids. The task here is to solve systems of the form Mz = r
robustly, accurately, and efficiently when M is discretized on a SAMR grid. For this
the Fast Adaptive Composite grid (FAC) method [19] is employed.

FAC extends techniques from multigrid on uniform grids to AMR grids. FAC
is a multiplicative Schwarz method. A V-cycle implementation of the method is
optimal requiring O(n) operations where n is the number of degrees of freedom. As
a preconditioner for NK methods, FAC employs smoothing on refinement levels with
a coarse grid solve using an approximate solver like multigrid. Below we describe the
FAC algorithm for completeness after introducing necessary notation.

e I! and I¢ denote interlevel data transfer operators (restriction and interpo-
lation, respectively) between the composite fine grid Q¢ and refinement level
QF. For example, in this paper I§ is based on bilinear interpolation and I¢ is
based on a simple averaging of fine cell data to coarse cells.

o I} 41 and If“ denote interlevel data transfer operators (restriction and in-
terpolation, respectively) between adjacent refinement levels Qf} and Q? 1
Operators I and I, £ may be considered as compositions of these operators.

e M¢€ is the composite fine grid discrete operator obtained by discretizing (5.4)
on Q°, and M* approximates M¢ on level £ .
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Expressed in the notation above, one iteration of a V-cycle FAC algorithm for lin-
ear problems with smoothing on refinement levels and an approximate solve on the
coarsest grid is:

Algorithm 3: Fast Adaptive Composite grid (FAC) Method
Initialize: ¢ = f¢ — M¢x®; ff = I‘re
foreach Qéﬂ l=J,...,2

Smooth: Mfet = f*
Correct : 2¢ = ¢ + I¢et
Update: r¢ = f¢— M°x*
Set el =1
Solve : Mlel = f!
Correct: 2¢ = x¢ + I{e!
foreach Q% 1 =2,...,J
Update: r¢ = f¢— M°x*
Set cff=1Ibre
Smooth: Mt = f*
Correct : x¢ = z¢ + Ige*

6. Numerical Results. This section illustrates the performance of Newton-
Krylov-FAC for equilibrium radiation diffusion problems on locally refined grids with
a comparison to uniform grid calculations. Before describing the test cases, we first
specify a few remaining details of the implementation.

Solvers and Software. As described earlier, a JENK solver preconditioned by
FAC is used to solve (4.1). This is accomplished using the infrastructure detailed in
[25]. This infrastructure provides access to the capabilities of SAMRALI [13] to imple-
ment SAMR-specific aspects of Algorithms 2 and 3, and access to an implementation
of JFNK from PETSc’s Scalable Nonlinear Equation Solver (SNES) package [2]. SNES
iterations are terminated when either an absolute tolerance || F'(xg)|| < €qps, a relative
tolerance ||F'(zg)|| < erer||F'(z0)]|, or a step tolerance ||si|| < €step is satisfied; we use
€abs = €rer = 1078 and Estep = 10719, For the linear systems that must be solved at
each inexact Newton step, GMRES is used with a maximum Krylov subspace dimen-
sion of 20, and n = 0.05 is used in (5.3) to terminate the linear iterations. Note that
it was never necessary to restart the GMRES iterations with these choices of max-
imum Krylov subspace dimension and stopping criteria. The preconditioner is one
V-cycle of FAC with two pre- and post-smoothing sweeps of red-black Gauf3-Seidel on
refinement levels. One V-cycle of semi-coarsening multigrid (SMG) [27] implemented
in hypre [12] is used on the coarsest level. All calculations were performed on Linux
workstations with Intel Xeon 2.4 GHz processors in double precision arithmetic.

Time step control. Equilibrium radiation diffusion problems (2.1) are rarely
solved in isolation, and are more often encountered as part of a more sophisticated
approximation to radiation transport or as one component in a larger multi-physics ap-
plication. Thus, time step selection for solving (2.1) must account for other time scale
restrictions that may be present. In such circumstances, a commonly-encountered
strategy for choosing At is based on restricting the maximum fractional change of E
to some prescribed percentage o € (0,1) [3, 26]:

n+1 _ n
e [Fis — B
(i.5) |EP -
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For the time discretization schemes used (BE and BDF2), this leads to an effective
time step control algorithm. For example, for BE, this leads to

|Er Tt
6.1 At < o min 4 .
( ) — (i.5) (Kv . D(E”J"l)VE"""l)ihﬂ

In practice, for a stand-alone solution of (2.1), this has several shortcomings. Initially,
At based on (6.1) is too large, so instead the calculations begin with a smaller time
step At = 10~%, which is increased by 10% until (6.1) yields the smaller value for At.
As the solution approaches steady state, (6.1) produces time steps that quickly become
too large; consequently, the rate of growth of At is limited by 5% for At € (0.5, 10.0)
and 3% for At > 10.0.

Selection of refinement regions. At regular intervals (specifically, every tenth
time step!), regions are identified where enhanced resolution is desired. In this work,
simple criteria are employed to identify features? of the solution that would benefit
from enhanced resolution. A gradient detector is used to identify regions where the
solution changes rapidly. We also use a curvature-based criterion [6]. It is found
that, at least for this problem, the curvature-based criterion leads to slightly larger
refinement regions, making it easier to ensure that the base of the thermal front
is entirely contained within the finest refinement level without resorting to ad hoc
procedures. However, the curvature-based criterion alone can miss relatively flat
regions where the solution nevertheless changes rapidly. Finally, if a cell is marked
for refinement, its eight nearest neighbors are also marked.

Test cases. Two test cases are used to illustrate the performance of Newton-

Fic. 6.1. Material configuration for test cases. Case 1 is on the left and Case 2 is on the right.

Krylov-FAC for solving (2.1), which are depicted in Figure 6.1. In both test cases,
Q = [0,1]2 and (2.3) is imposed at both the left 2 = 0 boundary and the right x = 1
boundary. Both cases are integrated to a final time of ¢ = 1500. Case 1 is taken
from [23], where it is used to illustrate the performance of a preconditioner for a
non-equilibrium diffusion model. The material properties are defined by

Z(o.y) = | 100 (@y) €GP
’ 10,  otherwise.

IThis choice is based on trial and error, and represents a trade-off between the size of the
refinement regions and ensuring that the base of the Marshak wave is always contained within the
finest refinement level until the next regridding event occurs.

2Efforts to develop an error-based refinement criterion for this problem is deferred to later work.
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With a = —3, this leads to a jump of three orders of magnitude in D at the material
interface.

Case 2 is adapted from the problem solved in [23]. In this, the material properties
are given by

100, (z,y) € [3,1] x [0, 7]
B 50, (x,y) € [é, é] X [17 Z]
ZEDEN w0 e

10,  otherwise.

6.1. Accuracy. Before presenting performance results for Newton-Krylov-FAC
methods on unsteady equilibrium radiation diffusion problems, accuracy measure-
ments are presented. For these measurements, the pattern of local refinement in the
dynamic grid calculations is not controlled, but allowed to evolve according to the
strategies outlined above. Thus, this serves as a verification exercise for both the
discretization scheme outlined in §4 as well as the regridding operations, which collec-
tively identify a new computational grid and transfer the solution from the old grid
to the new grid.

The accuracy studies are conducted for Case 2 with BDF2 as the time integrator
and o = 0.05 in the time step control algorithm. For boundary conditions (2.3), R =
25.0 at the z = 0 boundary and R = 0.25 at the £ = 1 boundary. Since an analytic
solution is not available for comparison, a reference solution on a 512 x 512 uniform
grid is first computed, and results obtained on locally refined grids are compared
against this reference solution. In regions where the locally refined grid is not at the
same resolution as the uniform grid for the reference solution, the comparison is based
on piecewise linear interpolation of the four nearest uniform grid neighbors.

01F

Relative Error (log)
o
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Time

Fic. 6.2. L2-norm of relative difference in locally refined solution against reference solution for
a fized base grid.

The first set of accuracy results uses a fixed base grid and fixed number of re-
finement levels, and examines errors over the course of the entire time integration.
This appears in Figure 6.2. This shows the relative error over time in the solution
computed on locally refined grids against the reference solution. The top curve is for
a 32 x 32 grid with no refinement; each successive curve uses the same base grid but
adds a level of refinement. As refinement levels are added, accuracy improvements
that appear to be second order are observed. Once four refinement levels are added to
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base grid, the finest level of the locally refined calculation is at the same resolution as
the reference solution. There, at least three digits of agreement between the reference
solution and solution obtained on the locally refined grid is observed.

The next set of accuracy results varies the base grid resolution as well as the
number of refinement levels at fixed times. These results are given in Figure 6.3.
Here we see excellent agreement among the solutions computed on different locally
refined grids, at least until the finest grid level matches the resolution of the reference
solution. Note that the finer base grids lead to better agreement with the reference
solution.

T 32x32 base ——
64x64 base ---x---
xxxxxxx

T 32x32 base ——
64x64 base ---x---

Relative Error (log)
g
Relative Error (log)

0.001

0.001

0.0001 0.0001
1512 1/256 1128 1/64 1/32 1512 1/256 1128 1/64 132

Grid Resolution Grid Resolution

F1G. 6.3. L2-norm of relative difference in locally refined solution against reference solution
for varying base grids. Horizontal axis shows the mesh size of the finest grid level in any of the
configurations. Time t = 0.5 is on the left, and time t = 2.5 is on the right.

6.2. Performance. Performance results are now presented for the two test cases
described previously. In order to stress the performance of the solvers, we set R = 2500
at the x = 0 boundary and R = 0.25 at the z = 1 boundary in (2.3), and set o = 0.1
within the time step control algorithm. Performance results are presented for both
BE and BDF2 computations.

6.2.1. Case 1. Time evolution of the solution and the grid hierarchy is shown in
Figure 6.4. By ¢t = 0.25, the incident energy has heated up the left side of the domain
and a Marshak wave has propagated into the domain and begun to interact with the
second material. Note that the finest level tracks the steepest part of the front, where
the solution rapidly changes by three orders of magnitude. The finest level continues
to track the front as it propagates further into the domain, and follows it as it wraps
around the second material at time ¢ = 1.

A comparison of the problem size needed for adaptive and uniform mesh calcu-
lations appears in Figure 6.5. In this example, the locally refined grid starts with
a 32 x 32 coarse grid plus 4 refinement levels. Initially, refinement is automatically
introduced only along the £ = 0 boundary to resolve the increase in energy density
due to the imposed radiation field. During this initial period the adaptive calculation
requires less than 6% of the storage of the uniform grid calculation. As the front
propagates into the domain, the refinement levels grow to capture the evolving front,
and the storage required for the adaptive method increases until a maximum of 22%
of the uniform grid calculation is needed. As the radiation energy in the interior of
the material increases, de-refinement takes place, until the simulation reaches close
to steady state at the end of the calculation, and the adaptive calculation requires
only 2% of the uniform grid calculation. The size of the adaptive calculation averages
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Fic. 6.4. Ewvolution of solution and grid for Case 1, using a 32 X 32 base grid plus 3 refinement
levels. Boundaries of refinement patches are superimposed on a pseudocolor plot of the solution
using a logarithmic scale. The coarsest level is outlined in green; level 1: yellow; level 2: light blue;
and level 3: magenta.

less than 10% of the size of the uniform calculation over the course of the simulation.
Similar behavior is observed when BDF2 is used for the time integration.

Next, we compare the number of iterations required by the adaptive and uniform
mesh calculations for BE and BDF2 time integration. This is summarized as averages
in Table 6.1. There is very little variation in the number of nonlinear iterations
for a fixed base grid, and a slight decrease as the base grid is refined for a given
number of refinement levels. Fixing resolution, we see a slight increase in the number
of nonlinear iterations as the resolution of the base grid is increased. The number
of linear iterations, which is a better reflection of the amount of work performed,
shows similar trends, though with greater variation. This is not very surprising, as
SMG’s very robust semi-coarsening/line relaxation algorithm on the global fine grid
is being replaced with simple point relaxation, geometric interlevel transfers, and
rediscretized operators at each refinement level. It must also be kept in mind that
the larger iteration counts occur on much smaller problems. For example, we are
comparing a combination of expensive SMG iterations on a 32 x 32 grid plus point
Gauf-Seidel iterations on intermediate levels against SMG iterations on a 512 x 512
uniform grid.

6.2.2. Case 2. Time evolution of the adaptive computation appears in Fig-
ure 6.6. By t = 0.5, the lower conductivity in Region 1 (Z = 20) has slowed the
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Comparison of problem size for uniform and adaptive computation
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Fic. 6.5. Comparison of problem size for adaptive vs. uniformly fine calculation.

Summary of performance for Case 1.
the number of refinement levels.

TABLE 6.1
The first column gives the size of the base grid; J is

Performance at a fized finest resolution is obtained by reading

diagonally from lower left to upper right. Grid configurations that were not run are denoted by —.

Average number of nonlinear iterations per time step

BE BDF2
J 1 2 3 4 5 1 2 3 4 5
32 x 32 44 | 42 | 42 | 43 | 45 || 44| 43 | 43 | 42 | 44
64 x 64 4.3 | 40 | 41 | 44 - 4.4 | 41 | 41 | 4.3 -
128 x 128 || 3.9 | 3.9 | 4.2 - - 4.1 | 39 | 4.1 - -
256 x 256 || 3.7 | 3.9 - - - 3.8 | 3.9 - - -
512 x 512 || 3.8 - - - - 3.6 - - - -
Average number of linear iterations per time step
BE BDF2
J 1 2 3 4 5 1 2 3 4 5
32 x 32 59 |66 | 72|84 |96 | 55|61 |64 74|84
64 x 64 58 | 6.7 | 7.6 | 9.1 - 54|61 |68 |78 -
128 x 128 || 5.8 | 7.0 | 8.2 - - 53| 63 | 7.3 - -
256 x 256 || 5.9 | 7.1 - - - 53 | 6.5 - - -
512 x 512 || 6.0 - - - - 5.5 - - - -

Marshak wave in comparison to the background material (Z = 10), which has been
recognized by our refinement criteria. By ¢ = 0.75, the front has begun to interact
with Region 2 (Z = 50) and has begun to propagate towards Region 3 (Z = 100).
Again, the finest region tracks this behavior. At ¢ = 1.0, the front continues towards
Region 3 and the thermal front has begun to wrap around Region 2 due to its lower
conductivity. By ¢ = 1.25, the Marshak wave has begun to interact with Region 3,
while the radiation energy in the interior of Region 2 begins increasing.

Comparison of problem sizes is presented in Figure 6.7. The situation is similar
to what was seen for Case 1. This time, the number of cells in the adapted grid



IMPLICIT AMR FOR EQUILIBRIUM RADIATION DIFFUSION 15

T&le+D3

57e+d3

4 T6e+03

381403

2 BSe+03

150403

FiG. 6.6. Ewvolution of solution and grid for Case 2, using a 32 X 32 base grid plus 4 refinement
levels. Boundaries of refinement patches are superimposed on a pseudocolor plot of the solution
using a logarithmic color scale. The coarsest level is outlined in green; level 1: yellow; level 2: light
blue; level 3: magenta; level 4: peach.

increases more quickly due to the presence Region 1, adjacent to the z = 0 boundary.
Eventually there is a decrease in the size of the dynamic calculation as Region 1 is
de-refined and before resolution is increased in Region 2. Two inflection points are
seen in the size of the locally refined calculation, initially as Region 2 is fully resolved
and resolution is increased around Region 3, and subsequently as Regions 2 and 3
are de-refined. The number of cells in the dynamic calculation peaks at less than
20% of the uniform grid calculation, then decreases steadily. On average the dynamic
calculation is around 8% of the size of the uniform grid calculation.

Table 6.2 compares nonlinear and linear iteration counts per time step. Once
again little variation is seen in the number of nonlinear iterations per time step for a
fixed base grid size or for fixed finest resolution, and a small decrease in this iteration
count for a fixed number of refinement levels. In contrast, the number of linear
iterations per time step increases slowly as more refinement levels are added, and
increases by nearly half as we fix resolution and move from a global fine grid to
a locally refined calculation. Again, this is likely due to the fact that operators
on refinement levels are simply obtained by rediscretization, and interlevel transfer
operators are purely geometric.

7. Conclusions and Future Work. The results presented demonstrate the
feasibility of combining implicit time integration with adaptive mesh refinement for
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Fic. 6.7. Comparison of problem size for adaptive vs. uniformly fine calculation.

TABLE 6.2
Summary of performance for Case 2. Notation is the same as for Table 6.1.

Average number of nonlinear iterations per time step

BE BDF2
J 1 2 3 4 5 1 2 3 4 5
32 x 32 44 | 43 | 40 | 41 | 42 | 44 | 43 | 40 | 40 | 41
64 x 64 43 139 | 39 | 41 - 4313939 | 40 -
128 x 128 || 4.0 | 3.7 | 3.9 - - 4.1 | 3.7 | 3.9 - -
256 x 256 || 3.8 | 3.7 - - - 3.8 | 3.7 - - -
512 x 512 || 3.7 - - - - 3.6 - - - -

Average number of linear iterations per time step

BE BDF2
J 1 2 3 4 5 1 2 3 4 5
32 x 32 58 |63 |71 |78 |87 ]| 54|58|64]|71|78
64 x 64 56 | 66 | 7.1 | 84 - 52 60| 67| 76 -
128 x 128 || 5.7 | 6.6 | 7.8 - - 5.1 (61|70 - -
256 x 256 || 5.6 | 7.0 - - - 5.0 | 6.3 - - -
512 x 512 || 5.7 - - - - 5.2 - - - -

equilibrium radiation diffusion problems. The numerical examples show that, for both
first and second order time integration schemes, the multilevel FAC preconditioner
effectively controls the number of linear iterations per time step. While good scalabil-
ity with the number of refinement levels is also demonstrated, these results should be
considered preliminary, since the refinement regions change as the number of levels is
increased and the resolution of the coarsest level is decreased.

There are several issues in implicit AMR that merit improvement and further
exploration. In particular, the interlevel transfers use geometric interpolation, an
approach that is known to lead to robustness problems in the presence of discontin-
uous coefficients. Coarse grid operators are defined via rediscretization, rather than
Galerkin coarsening. Evaluation of the parallel performance of the code is necessary,
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as is exploring the use of asynchronous multilevel preconditioners. The criteria for
selecting refinement regions are based on feature detection, and not estimation of
spatial errors. A systematic evaluation of temporal and spatial convergence orders
is needed to determine the efficacy of this approach. Before this can occur, the fact
that previous information is no longer a solution after regridding must be addressed.
We handle this by re-solving (2.1) on the new grid to update the most recent solu-
tion information. In [4] it was argued that this can be addressed with higher-order
spatial interpolation, but this approach fails for this problem due to the presence of
large spatial gradients. In [17] it is handled by reducing the size of the time step and
the order of the integrator, but the effect on the order of temporal accuracy was not
explored. We plan to investigate these issues in more detail in future work.

REFERENCES

[1] A.S. ALMGREN, J. B. BELL, P. CoLELLA, L. H. HOWELL, AND M. L. WELCOME, A conservative
adaptive projection method for variable density incompressible Navier-Stokes equations, J.
Comput. Phys., 142 (1998), pp. 1-46.

[2] S. BavLay, W. D. Gropp, L. C. McINNES, AND B. F. SmiTH, PETSc Users Manual, Tech. Rep.
ANL-95/11 - Revision 2.1.6, Argonne National Laboratory, 2004.

[3] C. BaLbwiN, P. N. BRowN, R. FaLcouT, F. GRAZIANI, AND J. JONES, lterative linear solvers
in a 2D radiation-hydrodynamics code: methods and performance, J. Comput. Phys., 154
(1999), pp. 1-40.

[4] M. BERrziNs, P. CAPON, AND P. JIMACK, On spatial adaptivity and interpolation when using
the method of lines, Appl. Num. Math, 26 (1998), pp. 117-133.

[5] R. BLAHETA, Adaptive composite grid methods for problems of plasticity, Math. Comp. Sim.,
50 (1999), pp. 123-134.

[6] J. G. BLom, R. A. TROMPERT, AND J. G. VERWER, Algorithm 758: VLUGR2: a vectorizable
adaptive-grid solver for PDEs in 2D, ACM-TOMS, 22 (1996), pp. 302-329.

[7] P. N. BROWN, A local convergence theory for combined inexact-Newton/finite-difference pro-

jection methods, STAM J. Numer. Anal., 24 (1987), pp. 407-434.

. S. DEMBO, S. C. EISENSTAT, AND T. STEIHAUG, Inexact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400-408.

. E. DENNIS JR. AND R. B. SCHNABEL, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall, Inc., 1983.

. C. EISENSTAT AND H. F. WALKER, Globally convergent inexact Newton methods, STAM J.
Optimization, 4 (1994), pp. 393-422.

[11] R. E. EWING, R. D. LAZAROV, AND P. S. VASSILEVSKI, Local refinement techniques for elliptic

problems on cell-centered grids. I: Error analysis, Math. Comp., 56 (1991), pp. 437-461.
[12] R. D. FaLcouTt AND U. M. YANG, hypre: a library of high performance preconditioners, in
Computational Science - CARS 2002 Part III, P. M. A. Sloot, C. J. K. Tan, J. J. Dongarra,
and A. G. Hoekstra, eds., vol. 2331 of Lecture Notes in Computer Science, New York, 2002,
Springer-Verlag, pp. 632—641.

[13] R. D. HORNUNG AND S. KOHN, Managing application complexity in the SAMRAI object-
oriented framework, Concurrency Comput.: Pract. Exp., 14 (2002), pp. 347-368.

[14] L. H. HoweLL AND J. A. GREENOUGH, Radiation diffusion for multi-fluid Eulerian hydrody-
namics with adaptive mesh refinement, J. Comput. Phys., 184 (2003), pp. 53-78.

[15] D. A. KNoOLL, L. CHACON, L. G. MARGOLIN, AND V. A. MOUSSEAU, On balanced approzimations
for time integration of multiple time scale systems, J. Comput. Phys., 185 (2003), pp. 583~
611.

[16] D. A. KNoLL AND D. E. KEYES, Jacobian-free Newton-Krylov methods: a survey of approaches
and applications, J. Comput. Phys., 193 (2004), pp. 357-397.

. L1, L. PETZOLD, AND J. M. HYMAN, Solution adapted mesh refinement and sensitivity anal-
ysts for parabolic partial differential equation systems, in Large-Scale PDE-Constrained
Optimization, vol. 30 of Lecture Notes in Computational Science and Engineering, Heidel-
berg, 2003, Springer-Verlag.

[18] R. E. MARSHAK, Effect of radiation on shock wave behavior, Physics of Fluids, 1 (1958), pp. 24—

29.
F. McCorMICK, Multilevel Adaptive Methods for Partial Differential Equations, SIAM,
Philadelphia, PA, 1989.

(8]

=

[9]

—

wn

(10]

(17]

w2

(19]

n



18 M. PERNICE AND B. PHILIP

[20] S. F. McCORMICK AND J. W. THOMAS, The Fast Adaptive Composite grid (FAC) method for
elliptic equations, Math. Comp., 46 (1986), pp. 439-456.

[21] D. MIHALAS AND B. WEIBEL-MIHALAS, Foundations of Radiation Hydrodynamics, Dover Pub-
lications, Inc., Mineola, NY, 1999.

[22] E. MINGUEzZ, P. MARTEL, M. GIL, J. G. RUBIANO, AND R. RODRIGUEZ, Analytic opacity for-
mulas for ICF elements, Fusion Eng. Des., 60 (2002), pp. 17-25.

[23] V. A. Mousseau, D. A. KNOLL, AND W. J. RIDER, Physics-based preconditioning and the
Newton-Krylov method for non-equilibrium radiation diffusion, J. Comput. Phys., 160
(2000), pp. 743-765.

[24] C. C. OBER AND J. N. SHADID, Studies on the accuracy of time integration methods for the
radiation diffusion equations, J. Comput. Phys., 195 (2004), pp. 743-772.

[25] M. PERNICE AND R. D. HORNUNG, Newton-Krylov-FAC methods for problems discretized on
locally refined grids, Comput. Visual. Sci., (2005). (to appear).

[26] W. J. RIDER, D. A. KNOLL, AND G. L. OLSON, A multigrid Newton-Krylov method for multi-
material equilibrium radiation diffusion, J. Comput. Phys., 152 (1999), pp. 164-191.

[27] S. SCHAFFER, A semicoarsening multigrid method for elliptic partial differential equations with
highly discontinous and anisotropic coefficients, STAM J. Sci.. Comput., 20 (1999), pp. 228—
242.

[28] L. StALS, Comparison of non-linear solvers for the solution of radiation transport equations,
Elec. Trans. Num. Anal., 15 (2003), pp. 78-93.

[29] R. A. TROMPERT AND J. G. VERWER, Analysis of the implicit Euler local uniform grid refine-
ment method, SIAM J. Sci. Comput., 14 (1993), pp. 259-278.

[30] ———, Runge-Kutta methods and local uniform grid refinement, Math. Comp., 60 (1993),
pp. 591-616.

[31] K.-H. WINKLER, M. NORMAN, AND D. MiIHALAS, Implicit adaptive-grid radiation-
hydrodynamics, in Multiple Time Scales, Academic Press, 1985.

[32] A. M. WINSLOW, Extensions of asymptotic neutron diffusion theory, Nucl. Sci. and Eng., 32
(1968), pp. 101-110.



